United States Patent

US009064299B2

(12) 10) Patent No.: US 9,064,299 B2
Sims 45) Date of Patent: Jun. 23, 2015
(54) FILTERS AND FUNCTIONS USING 5337264 A * 81994 Levien ..., 708/300
EXPONENTIAL DECAY 8,064,726 B1* 11/2011 d’Eon et al. ... 382/279
2011/0085084 Al* 4/2011 Jainetal. 348/598
(71) Applicant: Karl P. Sims, Cambridge, MA (US) 2014/0324362 Al* 10/2014 Andersson etal. 702/28
OTHER PUBLICATIONS
(72) Inventor: Karl P. Sims, Cambridge, MA (US)
Crowley et al. (“Fast Computation of the Difference of Low-Pass
(*) Notice: Subject to any disclaimer, the term of this Transform,” IEEE Transactions of Pattern Analysis and Machine
patent is extended or adjusted under 35 Intelligence, vol. PAMI-6, No. 2, Mar. 1984, pp. 212-222).*
U.S.C. 154(b) by 157 days. Rachid Deriche “Fast Algorithms for Low-Level Vision,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
(21) Appl. No.: 13/948,789 12(1):78-87 (1990).
Rachid Deriche “Recursively Implementing the Gaussian and Its
(22) Filed: Jul. 23, 2013 Derivatives,” Institut National de Recherche en Informatique et en
Automatique, 1893(4):1-24 (1993).
(65) Prior Publication Data Gunnar Farneback et al., “Improving Deriche-style Recursive Gaus-
sian Filters,” J Math Imaging Vis 26:293-299 (2006).
US 2014/0050415 Al Feb. 20,2014 Diego Nehab et al., “GPU-Efficient Recursive Filtering and
Summed-Area Tables,” pp. 1-11, Proceedings of the 2011 SIG-
Related U.S. Application Data GRAPH Asia Conference (Dec. 2011).
(60) Provisional application No. 61/684,444, filed on Aug. Sylvain Paris “Edge-preserving Smoothing and Mean-shift Segmen-
17.2012. T tation of Video Streams,” Adobe Systems, Inc. pp. 1-14 (2008).
’ (Continued)
(51) Int.ClL
GO6K 9/10 (2006.01) Primary Examiner — Yubin Hung
GO6T 5/00 (2006.01) (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
GO6F 7/556 (2006.01)
(52) US.CL (57) ABSTRACT
CPC e, GO6T 5/001 (2013.01); GOGF 7/556 The technology described in this document relates to filters
(2013.01); GOOT 5/002 (2013.01) and functions that are based on exponential decay functions.
(58) Field of Classification Search In one aspect, the technology is embodied in a method that
CPC oo GO6T 2207/20024; GO6K 9/40 includes using a computing device to compute a first function
USPC TR 382/260, 264 as a combination of (i) an exponential decay function, a decay
See application file for complete search history. factor for which is chosen based on a Gaussian function, and
. (ii) at least a second function that is obtained by one or more
(56) References Cited convolution operations on the decay function. The first func-
U.S. PATENT DOCUMENTS tion provides an approximation of at least a portion of the
Gaussian function.
4,951,144 A * 81990 DesJardinsc...... 348/578

5,121,443 A * 6/1992 Tomlinson 382/156

20 Claims, 6 Drawing Sheets

Aj 500

515

545¢

source!
505

5253
5200 530
d

1-d 545d

US 9,064,299 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Sovira Tan et al., “Performance of three recursive algorithms for fast
space-variant Gaussian filtering,” Science Direct Real-Time Imaging
9(2003) 215-228.

Bill Triggs et al., “Boundary Conditions for Young-van Vliet Recur-
sive Filtering,” IEEE Transactions on Signal Processing, 54(5):1-3
(20006).

Lucas J. van Vliet et al., “Recursive Gaussian Derivative Filters,”
IEEE Computer Society Press, vol. I, pp. 509-514 (1998).

Ben Weiss, “Fast Median and Bilateral Filtering,” Shell & Slate
Software Corp., pp. 1-8 (2006).

Qingxiong Yang et al., “Real-Time O(1) Bilateral Filtering,” http://
vision.ai.uiuc.edu/~qyang6/, pp. 1-8 (2009).

IanT. Young et al., “Recursive implementation of the Gaussian filter,”
Signal Processing 44:139-151 (1995).

* cited by examiner

U.S. Patent Jun. 23,2015 Sheet 1 of 6 US 9,064,299 B2

FIG. 2

U.S. Patent Jun. 23,2015 Sheet 2 of 6 US 9,064,299 B2

3101A

FIG. 4

US 9,064,299 B2

Sheet 3 of 6

Jun. 23, 2015

U.S. Patent

B g omow o

S 'Ol

W w wm w w mg W W W wn W gy W s W m w W

oSPS

T

: 055
; 188D
:
oo o oo ow o +
gD M ‘M K
BSYS qsvs
Bsts qses
=y qses.
P p
ocg> °0LS
BgzS 0TS 0€S
T Tees |
p a0In0s :
SIS

<l

q0¢s

€l

202s

US 9,064,299 B2

Sheet 4 of 6

Jun. 23, 2015

U.S. Patent

e

9 '9OH4

90,
uonouny

1S41} U} UO pasE(UohoUN) UBISSNEL) 3y} JO
uonuod e 1se9| JE JO UoRWIX0Jdde ue apIADIg

0L

uonouny Aedap ay) uo suonelado uonNOAUOD
8J0W JO 8uo Buisn psulejgo uonouny
puooss B Jses| 1B pue uonouny Aeoap auy)
JO uoljeuIqWOD B se uoiouny isdi e sindwo)

207
pajewixoidde ag 0} uonouny
uelssnes) B UC paskq Uasoyd s Yyolym
10 JojoR) ARD9P B ‘usiloun) Aesep e ueyqo

US 9,064,299 B2

Sheet 5 of 6

Jun. 23, 2015

U.S. Patent

008 lﬁ«

JADIE

808
[suleY JB)I UBISSNEL)

ayy Aq Buusyy e Bunussaidal uonewxoidde
ue se anjea [axid paJaljy 8U} 9pIACId

908
SUOIBOO| AJOLUBLU PUODes pue

1841} 8U} Ul sanjea pajepdn ay) Jo uoeLIgLIOD
e se anjea |axid paJsyy e aindwo)

708 uoe20| Alowsw
18413 BY) Ul anjeA pajepdn sy} uo paseq
uone20| AloWwaw puooss e jses| je aepdn

A

<08 jouIY Jayy

ueiSsnes) B UO paseq sl Jey} uonouny Aeosp
B JO J0j0R) ARDSD B puk anjea |axid jruibuo
ue uo paseq uoneoso| Alowsw 1sii e aiepdn

U.S. Patent Jun. 23,2015 Sheet 6 of 6 US 9,064,299 B2

L T ‘e

I Memory
2 950
Storage Device 1] 940 “;t Devices

inpul/Output

nput/Cutput

A RN

T

TTTT

11l

FIG. 8

US 9,064,299 B2

1
FILTERS AND FUNCTIONS USING
EXPONENTIAL DECAY

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 61/684,444, filed Aug. 17, 2012, the
entire content of which is incorporated here by reference.

TECHNICAL FIELD

This disclosure relates to filters and functions that are
based on exponential decay functions.

BACKGROUND

Gaussian blur filters are used in image-processing and
special effects applications including image smoothing,
sharpening, edge detection, glows, glints, soft focus, and
others. The Gaussian kernel is separable so it can be effi-
ciently applied in one dimension at a time. It also has an
infinite impulse response (IIR) so every source pixel can
affect every destination pixel.

SUMMARY

In one aspect, a method includes using a computing device
to compute a first function as a combination of (i) an expo-
nential decay function, a decay factor for which is chosen
based on a Gaussian function, and (ii) at least a second func-
tion that is obtained by one or more convolution operations on
the decay function. The first function provides an approxima-
tion of at least a portion of the Gaussian function.

In another aspect a method includes performing a set of
operations for each pixel in a set of pixels representing a
signal. The operations include updating a first memory loca-
tion based on the pixel value and an exponential decay func-
tion that is based on a Gaussian filter kernel. The operations
also include updating a second memory location based on an
updated value in the first memory location, and computing a
filtered pixel value as a combination of the updated values in
the first and second memory locations, the filtered pixel value
approximating a filtering of the signal by the Gaussian filter
kernel.

In another aspect, a system includes memory and a proces-
sor. The processor is configured to compute a first function as
a combination of (i) an exponential decay function, a decay
factor for which is chosen based on a Gaussian function, and
(ii) at least a second function that is obtained by one or more
convolution operations on the decay function. The first func-
tion provides an approximation of at least a portion of the
Gaussian function.

In another aspect a system includes a first memory location
and a second memory location. The first memory location is
configured to be updated based on (i) a pixel value of an input
signal, and (ii) an exponential decay function that is based on
a Gaussian filter kernel. The second memory location is con-
figured to be updated based on an updated value in the first
memory location. The system also includes circuitry config-
ured to compute a filtered pixel value by combining the
updated values in the first and second memory locations. The
system further includes an output storage location configured
to receive, the filtered pixel value as an approximation of a
filtering of the signal by the Gaussian filter kernel.

In another aspect, computer program product includes a
computer readable storage device encoded with instructions.
Upon execution, the instructions cause one or more proces-

10

15

20

25

30

35

40

45

50

55

60

65

2

sors to compute a first function as a combination of (i) an
exponential decay function, a decay factor for which is cho-
sen based on a Gaussian function, and (ii) at least a second
function that is obtained by one or more convolution opera-
tions on the decay function. The first function provides an
approximation of at least a portion of the Gaussian function.

In another aspect, a computer program product includes a
computer readable storage device encoded with instructions.
Upon execution, the instructions cause one or more proces-
sors to perform a set of operations for each pixel in a set of
pixel values representing a signal. The operations include
updating a first memory location based on the pixel value and
an exponential decay function that is based on a Gaussian
filter kernel, and updating a second memory location based on
anupdated value in the first memory location. The operations
also include computing a filtered pixel value as a combination
of the updated values in the first and second memory loca-
tions. The filtered pixel value approximates a filtering of the
signal by the Gaussian filter kernel.

Implementations can include one or more of the following.

The exponential decay function can include a spatial
domain function or a time domain function. The approxima-
tion of the Gaussian function can be provided as a combina-
tion of the first function and a spatially-reversed version of the
first function. The second function can be computed as a
self-convolution of the decay function. The second function
can be computed as a convolution between two convolution
sums based on the decay function. Computing the combina-
tion can include selecting corresponding weights for the
decay function and at least the second function such that a
sum of the weights is substantially equal to one.

The first memory location can be updated based on a cur-
rent value stored in the first memory location. The second
memory location can be updated based on a decay factor of
the exponential decay function and a current value stored in
the second memory location. The combination can further
include the original pixel value scaled in accordance with a
weight. The filtered pixel values can be displayed on a display
device or stored in a storage device. The original pixel values
obtained from the signal can be distributed along two or more
dimensions. The original pixel values obtained from the sig-
nal can be distributed along three dimensions. A third
memory location can be updated based on an updated value in
the second memory location.

The circuitry for computing the filtered pixel value can
combine the updated value in the third memory location with
the updated values in the first and second memory locations.
The first or second memory location can include a register.
The first memory location can be configured to be updated
based on an output of an adder that sums a scaled version of
the pixel value of the input signal with a scaled value from the
first memory location. The second memory location can be
configured to be updated based on an output of an adder that
sums scaled values from the first and second memory loca-
tions. The third memory location can be configured to be
updated based on an output of an adder that sums scaled
values from the second and third memory locations.

Advantages of the technology described in this document
can include one or more of the following. A Gaussian function
ora filter kernel based on a Gaussian function (also referred to
as a Gaussian kernel) can be approximated by using a com-
bination of two or more functions derived from exponential
functions. Because mathematical manipulations of exponen-
tial functions are typically straightforward, these computa-
tions can be performed in a computationally efficient fashion.
In image processing applications, filter kernels based on the
techniques described here are amenable to easy coding, and

US 9,064,299 B2

3

fast processing, and can be used for efficient computation
using standard single or multi-core central processing unit
(CPU) hardware, or graphics processing unit (GPU) hard-
ware.

Other features and advantages are apparent from the fol-
lowing detailed description, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an example of an exponential decay function.

FIG. 2 shows an exponential decay curve and curves rep-
resenting convolution operations on the exponential decay
curve.

FIG. 3 is a schematic representation of approximating a
Gaussian function.

FIG. 4 shows a Gaussian function overlaid on a corre-
sponding approximation.

FIG. 5 is a schematic representation of an example digital
filter system.

FIG. 6 is a flowchart depicting an example sequence of
operations for approximating a Gaussian function.

FIG. 7 is a flowchart depicting an example sequence of
operations for filtering a digital image.

FIG. 8 is a diagram of a computing device.

DETAILED DESCRIPTION

Gaussian functions are used in various applications. For
example, in signal and image processing applications, Gaus-
sian function based filter kernels can be used for smoothing or
blurring signals. Processing based on Gaussian functions
however can be computationally intensive and therefore often
challenging in resource constrained environments, such as in
real-time applications or mobile computing platforms. Com-
putations based on a Gaussian function can be made faster
and less resource-consuming by representing the Gaussian
function as a combination of functions that are more ame-
nable to resource constrained implementations. By choosing
appropriate weights for combining the functions, the approxi-
mate representation can be made to closely resemble the
Gaussian function.

In some implementations, a Gaussian function can be rep-
resented using a combination of an exponential decay func-
tion and one or more additional functions that are derived
from the decay function. FIG. 1 shows an example of an
exponential decay curve 100 that can be used as the decay
function. FIG. 1 also shows discrete samples 105a-105/(105
in general) of the exponential decay curve 100. A sample (for
example, 105¢) can be computed recursively by scaling the
preceding sample (1055, in this example) in the series by a
constant. If the decay rate per discrete sample is given by d
where 0<d<1 with a larger d indicating a faster decay, then the
values can be found by repeated scaling by s=1-d. In example
of FIG. 1, d=0.4, the exponential decay curve 100 is given by
y=0.6" and each discrete sample 105 of the exponential decay
curve 100 can be computed as y,=0.67y_,, where x=1,
2, ..., and represents discrete values of x.

FIG. 2 shows examples of curves 205 and 210 that repre-
sent convolution operations on an exponential decay curve
200. A convolution operation can include, for example, con-
volving a curve (or function) with itself. This operation is also
referred to as a self-convolution. The result of a convolution
can be referred to as a convolution sum. Therefore, a result or
convolution sum B representing a self-convolution of a func-
tion A is given by:

B=4%*4

10

15

20

25

30

35

40

45

50

55

60

65

4

wherein the operator * denotes a convolution operation. A
convolution operation can also include convolving two func-
tions or curves. For example, a result or convolution product
C representing a convolution between two functions A and B
is given by:

C=4*B

In the examples of FIG. 2, the curve 205 represents the result
of self-convolution of the exponential decay curve 200. The
curve 210 represents the result of a convolution between the
curves 200 and 205.

In some implementations, a Gaussian function can be
approximated as a weighted combination of an exponential
decay curve and curves representing convolution sums based
on the exponential decay curve. Each of these curves or
functions can be referred to as a component of the approxi-
mation. This is schematically represented in FIG. 3. In this
example, the portion 3004 (i.e. the portion corresponding to
positive x values) of'a Gaussian function 300 is represented as
a combination of an exponential curve 305, and two other
curves 315 and 325. The portion 30054 (i.e. the portion corre-
sponding to the negative x values) of the Gaussian function
300 is represented as a combination of the curves 310, 320,
and 330. Because the Gaussian function 300 depicted in this
example is symmetric around the Y axis, the curves 310, 320,
and 330 are mirror-images of the curves 305, 315, and 325,
respectively, reflected on the Y axis. In some implementa-
tions, the curve 315 represents a convolution sum correspond-
ing to a self-convolution of the curve 305. In some implemen-
tations, the curve 325 can represent a convolution sum
corresponding to a convolution of the curves 305 and 315.
Further, even though FIG. 3 illustrates a Gaussian function
being represented as a combination of three curves (and their
respective mirror images), a higher or lower number of curves
can also be used for approximating the Gaussian function.

In general, for two discrete functions f[x] and g[x], the
convolution sum y[x] is given by:

However, for discrete exponential decay functions, computa-
tion of convolution sums can be simplified. For example, to
convolve a one-dimensional (1D) array of N samples of an
exponential decay function, values in a destination array
(which stores the convolution sum) can be efficiently com-
puted based on the N samples of a source array. This can be
done using a single register value r that is retained between the
samples. This operation can be represented in a pseudo-code
as follows:

r=0

for x=0to N-1
1 += d*(source[x] -)
dest[x] =1

In this example, the variables source [.] and dest[.] represent
the source and destination arrays, respectively. The operation
represented in the pseudo-code above can be viewed as being
equivalent to a weighted linear interpolation between each
new source value and the previous destination value.

In some implementations, multiple convolutions can be
performed together during a single pass through the data by
using more than one register value. For example, a discrete

US 9,064,299 B2

5

exponential function and two convolution sums based on the
exponential function can be computed in a single pass as
follows:

rl=r2=r3=0

for x from 0 to N-1
rl += d*(source[x] — r1)
12 4= d*(1l - 12)
13 4+=d*(12 - 13)
dest[x] =13

Inthis example, r1, r2, and r3 represent three separate register
values.

In some implementations, where reading and writing of
data to and from memory takes more time than the actual
computation, multiple convolutions (for example, three or
four convolutions) can be calculated approximately at the
same speed as a single convolution when done at once in the
same pass through the data. This property can be used in
efficient implementation of a Gaussian blur filter, as
described next.

Gaussian blur filters are useful in various image-process-
ing and special effects applications including, for example,
image smoothing, sharpening, edge detection, glows, glints,
and soft focus. Multi-dimensional Gaussian kernels are sepa-
rable into two or more one-dimensional kernels. Therefore,
two-dimensional (2D) kernels used in image processing
applications can be efficiently separated into two 1D kernels
and applied along one dimension at a time. A Gaussian filter
kernel also has an infinite impulse response (IIR), and there-
fore a destination pixel can be affected by a large number of
source pixels. In some cases, each destination pixel can be
affected by all source pixels.

In some implementations, a Gaussian filter kernel can be
approximated by combining multiple convolutions of an
exponential decay filter kernel. The 2D Gaussian kernel can
be separated into two 1D Gaussian kernels that are applied
along the horizontal and vertical dimensions, respectively.
For example, each of the 1D kernels can be substantially
similar to the Gaussian function 300 depicted in FIG. 3. The
1D Gaussian kernels can then each be approximated, for
example, as described above with reference to FIG. 3. To
account for the forward functions (e.g., as represented by the
curves 305, 315, and 325) and the corresponding mirror
images (e.g. as represented by the curves 310, 320, and 330,
respectively), a forward pass and a backward pass are pro-
cessed for each dimension. For example, an image is first
blurred horizontally by summing the results of a forward
(right) pass and a backward (left) pass along the horizontal
dimension. The image is also blurred vertically by summing
the results of a forward (up) pass and backward (down) pass
along the vertical dimension. In some implementations, each
of these passes can use a weighted combination of one, two,
three, or more simultaneous exponential decay convolutions,
the weighted combination approximating a Gaussian shaped
kernel.

In approximating a Gaussian function (or kernel) by two or
more component functions (or kernel), the weights of the
components are selected such that the combination closely
resembles the Gaussian function (or kernel). For example,
when approximating a Gaussian kernel with three component
kernels, the weights, w,, w,, w;, for the three component
kernels are selected such that the resultant approximation or
near-Gaussian final kernel has a slope substantially equal to
zero at the center.

10

15

20

25

30

35

40

45

50

55

60

6

This can be done, for example, by finding the relative
slopes, m,, m,, m;, of each component, and then setting w to
1.0, and setting both w, and w, to substantially equal values
that give a resulting kernel with a slope at the center being
substantially equal to zero. This can be mathematically rep-
resented using the following set of equations:

m=log(1-d)
my=d(log(1-d)+1)
my=d>(log(1-d)+3/2)
wy=—mayf(m +m,)
Wa=Wy

wiy=1

where the decay rate d (as defined above) is small for a large
blur width (i.e. if the Gaussian kernel has a high standard
deviation) and large for a small blur width (i.e. if the Gaussian
kernel has a low standard deviation). In accordance with the
set of equations shown above, for relatively small d values,
the weights w,, w,, and w are nearly equal. However, w, and
W, are lower than w; for larger d values. The set of equations
for finding the relative slopes m;, m,, m,, and weights w,, w,,
W3, as shown above, are for illustrative purposes. Other meth-
ods of determining the relative slopes, and/or weights asso-
ciated with the component curves, functions or kernels are
within the scope of this disclosure.

In some implementations, to avoid the center value of the
Gaussian being counted twice when summing the two direc-
tional passes (i.e. the forward and backward passes), an addi-
tional negative weight w, can be used to scale and subtract the
input pixel value on one of the passes. The weight w0 can be
determined as follows:

_ 2 3
Wo=—W, d—Wod*—w3d-

The weights can then be normalized such that a sum of the
weights, as used in both directional passes, is substantially
equal to 1. For example, because w,, is used only in one
direction and the other weights are used in both directions,
each of the weights can be normalized by the following scal-
ing factor:

1/ wo+2(w+wo+ws))

When processing an image using a Gaussian kernel that is
approximated as described above, the per dimension pixel
processing can be represented using the following pseudo
code:

// forward pass
11=12=r3=0
for x from 0 to N-1
1l += d*(source[x] — r1)
12 +=d*(rl - 12)
13 +=d*(2 - 13)
dest[x] = w1*(rl + 12) + w3*r3
// backward pass
11=12=r3=0
for x from N-1 to 0
s = source[x]
1l +=d*(s - rl)
12 +=d*(rl - 12)
13 +=d*(2 - 13)
dest[x] += wO*s + w1*(rl + 12) + w3*r3

The r values (i.e. rl, 2, and r3, in this example) can be
initialized to zero such that pixels outside the borders of the
source image appear black. Alternatively the r values can also

US 9,064,299 B2

7

be initialized as substantially equal to the edge pixel value.
This provides a clamped appearance as if the edge pixels are
replicated outside the borders of the source image. Additional
“edge modes” can be implemented by performing more than
one forward and one backward pass through the pixels. For
example, to simulate a repeated or reflected copy of the source
image beyond the borders, an initial partial pass can be used
to preset the r values appropriately from the source image
before computing the destination image.

The decay factor d can be selected based on a desired
standard deviation a as follows:

d=1-(0.091+0.0675070- %)V

In some implementations, decay rates that correspond to vari-
ous o values can be pre-computed and stored in a computer
readable storage device. The pre-computed decay rates can be
determined using optimization techniques, for example, by
comparing resultant approximations with target Gaussian
functions and substantially minimizing the difference
between the two. For instance, a decay rate for a given stan-
dard deviation value can be computed such that the mean
squared error between the approximation and the target Gaus-
sian function is below a threshold. The decay rate can also be
computed in real time using, for example, the equation above.
In some implementations, a combination of the above meth-
ods can also be used. For example, a set of pre-computed
values can be stored in a computer readable storage device
and if an input o value does not correspond to a stored value,
the decay rate can be computed in real time using the equation
above or by interpolating between stored values.

FIG. 4 illustrates a Gaussian function 400 overlaid on a
corresponding approximate curve 410. In this example, the
standard deviation o of the Gaussian function 400 is equal to
200 and the decay rate d of the corresponding exponential
decay functionis equal to 0.0118. The approximate curve 410
is obtained using a weighted combination of the exponential
decay function and two convolution sums derived from the
exponential decay function. The specific weights used for this
example are approximately w,=0.1662, w,=0.1662, and
w;=0.1686, respectively, with w,=—0.002 (which subtracts
the original source image on one of the directional passes).

FIG. 5 illustrates a schematic representation of an example
digital filter system 500 that implements an approximate
Gaussian kernel as described above. The system 500 retrieves
avalue of a source pixel 505 (for example during a horizontal
forward pass 510) in a given row 515 (or column, depending
on the dimension along which processing takes place) of
pixels. The value of the source pixel 505 can be stored in a
storage device location such as a register. The system 500 also
includes three registers 520a, 5205, and 520c¢ (520, in gen-
eral) that are connected in cascade with the register storing the
value of the source pixel 505. The lines 5254, 5255, and 525¢
(525, in general) between the registers 520 each represents a
multiplier (the value for which can be selected, for example,
as substantially equal to the decay factor d). The system 500
also includes at least one adder 530 at the front end of each
register 520. Each of the adders 530 can be configured to
receive two inputs and provide an output (as a sum of the two
inputs) for storing in a corresponding register 520. An output
of each of the registers 520 is connected to a corresponding
adder 530 through another multiplier. These multipliers are
represented in FIG. 5 as lines 5354, 5355, and 535¢ (535, in
general). In some implementations, a value for each of the
multipliers 535 can be selected as substantially equal to (1-d).
In some implementation, and as shown in the pseudo-code
examples above, each register is incremented by d times the
difference between the input and the current value of the

20

30

35

40

45

55

8

corresponding register. Note that these two formulations:
r+d*(source-r) as shown in the pseudo-code, and (1-d)*r+
d*source as shown in FIG. 5, are algebraically equivalent.

In some implementations, an output of the registers 520 are
scaled by appropriate weights (w,, w,, and ws, in this
example) and added together using an adder 540. In some
implementations, the value of the source pixel 505 is also
scaled (for example by the weight TO and added with the
scaled values from the registers 520 in one of the directional
passes. Scaling of the outputs of the registers 520 and the
value of the source pixel 505 can be implemented using
multipliers that are represented in FIG. 5 as lines 545a-545d4
(545, in general). The output of the adder 540 represents a
destination pixel value (i.e. a result approximating a filtering
by a Gaussian kernel) 550. In the second or backward pass,
the destination is incremented so that the destination receives
the sum of both directional passes. The destination pixel value
550 can be stored in an appropriate storage device or provided
to an output device such as a printer or a display device.

The time for computing a Gaussian blur using the approxi-
mation described here can be substantially invariant with
respect to the blur width, and linear with respect to the total
number of pixels over which the blur is computed. In some
implementations, for large blur widths, the approximation
methods described here can be faster than, for example using
direct convolutions of Gaussian values, repeated box convo-
Iutions, or Fast Fourier Transforms (FFTs). In some imple-
mentations, the methods described here can be robust at large
blur widths and can produce stable results using single pre-
cision (32-bit) floating point calculations. Therefore,
smoothly animatable results can be achieved with 32-bit
floating point calculations (as opposed to 64-bit calculations
that may slow down calculations) even when the standard
deviation of the approximated Gaussian is higher than, for
example, 2000. In addition the kernel shapes achieved by the
approximations described here are symmetrical, do not have
negative values, and exhibit a smooth response at zero or
center frequency (which can also be referred to as a DC
response). For example, if the source image is of a solid color,
the filtered resultis of substantially the same color (e.g., when
using the edge clamping mode). The overall computation
time for methods described here is low because for each
directional pass, only one memory read, and one write (or
increment) operation is performed per pixel.

FIG. 5 describes one example hardware implementation.
In some implementations, the approximations and filtering
described here can be performed using a general purpose
computer or processor. In such cases, the processor or general
purpose computer can be programmed using computer read-
able instructions stored on a computer readable storage
device. Other implementations are also possible, such as ones
that include a Graphics Processing Unit (GPU).

A GPU (also referred to as a visual processing unit or VPU)
is an electronic circuit that manipulates and alters memory to
accelerate rendering of images stored at a memory location
such as a frame buffer. GPUs can be used in, for example,
embedded systems, mobile phones, personal computers,
workstations, and game consoles. GPUs can have parallel
structures designed to efficiently manipulate computer graph-
ics and can be advantageous in situations where processing of
large blocks of data is done in parallel. A GPU can be embod-
ied in a video card, or can be disposed on a motherboard or in
a CPU.

In some implementations specifically for multi-core pro-
cessing such as on a GPU, the blurring technique described
above may use one column of pixels per work-item or thread
for vertical blurring, and one row per work-item or thread for

US 9,064,299 B2

9

horizontal blurring. In some GPU implementations, when
processing of columns is significantly faster than processing
rows due to more efficient memory access coherence, for
faster processing of rows, the entire image can instead be
transposed, processed by columns, and then transposed back.
Alternatively, in other implementations, for fast processing of
horizontal rows (or vertical columns), multiple adjacent pix-
els can be read and written together by each thread to improve
memory access coherence. In some implementations, for
more efficient processing of color images when the number of
processing cores available is relatively high compared to the
number of pixel columns (or rows) in the image, one core can
be assigned to each of the RGB or RGBA color channel-
columns (or rows), rather than assigning each whole-pixel
column (or row) to one core. This allows 3 or 4 times as many
cores, respectively, to be utilized at once. Using techniques
described here, 1920x1080 RGBA images with 32 bit float
precision per channel were blurred at a speed of about 200
frames per second using an NVidia GeForce GTX 580 (512
cores, 1.5 GHz).

The techniques described above have been described with
respect to the spatial domain. In some implementations, the
techniques can also be extended for processing in another
domain such as the time domain. For example, an exponential
decay curve can also be used in the time domain to create
effects such as trails and motion detection. Some of these
effects can include a temporal smoothing that can be achieved
by combining each source frame with the previous result
frame using a weighted average. This effectively includes
convolving the input image sequence by an exponential decay
kernel in the time dimension. In some implementations, the
smoothing in time can also be performed using a curve with a
less steep initial decline and a delayed peak, by using more
than one exponential decay convolution (for example, similar
to the curves 205 and 210 shown in FIG. 2 for the spatial
domain). This way, an averaging over a large number of
frames can be performed using, for example, only one or two
frames worth of temporary memory.

In some implementations, simple motion detection can be
performed by finding the difference between a frame and a
time-smoothed result of multiple past frames. For instance,
the following illustrative example uses the difference
between a current frame and the result of two exponential
decay convolutions. In this example, d is the decay rate,
source and dest are the input and output sequences of N
images sampled at each frame f, and rl and r2 are images of
temporary memory retained between frames. Omitting the
pixel loops within the images, the pseudo-code can be repre-
sented as follows:

r1=r2=0
for f from 0 to N-1
1l += d*(source[f] - r1)
12 4= d*(rl - 12)
dest[f] = abs(source[f] — 12)

Motion detection and time-smoothing can be combined
with other procedures such as image warping, distortion, or
fluid simulation, to create interesting time effects, possibly at
interactive or real-time speeds.

FIG. 6 shows a flowchart 700 depicting an example
sequence of operations for approximating a Gaussian func-
tion. The operations can include obtaining a decay function
(702). A decay factor characterizing the decay function is
chosen based on the Gaussian function that is to be approxi-
mated. The decay function can include, for example, a time

20

40

45

50

55

10

domain function or a spatial domain function. In some imple-
mentations, the decay function is an exponential decay func-
tion. In some implementations, the decay function can be
represented as substantially similar to the curve 305 or 310
described above with reference to FIG. 3.

Operations also include computing a first function as a
combination of the decay function and at least a second func-
tion (704). The second function can be obtained using one or
more convolution operations on the decay function. For
example, the second function can be represented as a curve
substantially similar to any one of the curves 315, 320, 325 or
330 described with reference to FIG. 3. In some implemen-
tations, the second function can be a combination of multiple
functions. For example, the second function can include a
combination of the curves 305, 315 and 325 shown in FI1G. 3.
Referring again to FIG. 3, if the decay function is the curve
305 and the second function is a combination of the curves
315 and 325, the first function represents the portion 300a of
the Gaussian function 300.

Operations also include providing an approximation of at
least a portion of the Gaussian function based on the first
function (706). In some implementations, the approximation
can include reversing the first function and combining the
reversed portion symmetrically with the first function. For
example, with reference to FIG. 3, if the first function repre-
sents the portion 300a of the Gaussian function 300, repre-
senting the entire Gaussian function 300 can include revers-
ing the first function to obtain a function that represents the
portion 3005 of the Gaussian. Ifthe first function is in the time
domain, the approximation can include the first function and
a time-reversed version of the first function. Similarly, if the
first function is in the spatial domain, the approximation can
include the first function and a spatially-reversed version of
the first function.

FIG. 7 is a flowchart 800 depicting an example sequence of
operations for filtering a digital signal. The signal can include
information on values distributed along one or more dimen-
sions. For example, the signal can include information on
pixels of a two-dimensional image. In some implementations,
the signal can include information on voxels (also known as
three dimensional pixels) distributed in three spatial dimen-
sions. Operations can include updating a first memory loca-
tion based on an original pixel value and a decay factor of a
decay function (802). The decay factor d can be chosen based
on a Gaussian filter kernel. For example, the decay factor can
be chosen based on a standard deviation of the Gaussian filter
kernel. In some implementations, the first memory location
can be a storage device location such as the register 520a
shown in FIG. 5 and updating the first memory location can
include scaling the original pixel value by d, scaling a current
value stored in the first memory location by (1-d) and sum-
ming the two scaled values.

Operations also include updating at least a second memory
location based on the updated value in the first memory loca-
tion (804). The second memory location can be a storage
device location such as the register 52056 shown in FIG. 5.
Updating the second memory location can include, for
example, scaling the updated value in the first memory loca-
tion by d, scaling a current value stored in the second memory
location by (1-d) and summing the two scaled values. Addi-
tional memory locations can also be updated. For example, as
shown in FIG. 5, a third memory location can be stored in a
storage device location such as the register 520c¢ and updating
the third memory location can include, for example, scaling
the updated value in the second memory location by d, scaling
a current value stored in the third memory location by (1-d)
and summing the two scaled values.

US 9,064,299 B2

11

Operations also include computing a filtered pixel value as
a combination of the updated values in the first and second
memory locations (806). In some implementations, the
updated values in the first, second and possibly additional
memory locations are combined after being scaled by appro-
priate weights. Referring again to the example shown in FI1G.
5, the updated values in the memory locations (e.g. the reg-
isters 520) are weighted using the multipliers represented by
the lines 545a-545¢ and combined to compute the filtered or
destination pixel value 550. In some implementations, com-
puting the filtered pixel value also includes scaling the origi-
nal or source pixel value and combining the scaled original
pixel value with the scaled and updated values in the memory
locations.

Operations further include providing the filtered pixel
value as an approximation representing a filtering by the
Gaussian filter kernel (808). The filtered pixel value can be
stored in a storage device or provided to an output device such
as a printer or display device.

FIG. 8 is a schematic diagram of a computer system 900.
The system 900 can be used for the operations described in
association with any of the computer-implemented methods
described above, such as the sequences of operations repre-
sented by the flowcharts 700 or 800. The system 900 can be
incorporated in various computing devices such as a desktop
computer 901, server 902, and/or a mobile device 903 such as
a laptop computer, mobile phone, tablet computer or elec-
tronic reader device. The system 900 includes a processor
910, a memory 920, a storage device 930, and an input/output
device 940. Each of the components 910, 920, 930, and 940
are interconnected using a system bus 950. The processor 910
is capable of processing instructions for execution within the
system 900. In one implementation, the processor 910 is a
single-threaded processor. In another implementation, the
processor 910 is a multi-threaded processor. The processor
910 is capable of processing instructions stored in the
memory 920 or on the storage device 930 to display graphical
information for a user interface on the input/output device
940. In some implementations, the processor 910 is a mobile
processor that is designed to save power. In some implemen-
tations, the processor 910 or the system 900 in general
includes a GPU.

The memory 920 stores information within the system 900.
In some implementations, the memory 920 is a computer-
readable storage medium. The memory 920 can include vola-
tile memory and/or non-volatile memory. The storage device
930 is capable of providing mass storage for the system 900.
In one implementation, the storage device 930 is a computer-
readable medium. In various different implementations, the
storage device 930 may be a floppy disk device, a hard disk
device, an optical disk device, or a tape device.

The input/output device 940 provides input/output opera-
tions for the system 900. In some implementations, the input/
output device 940 includes a keyboard and/or pointing
device. In some implementations, the input/output device 940
includes a display unit for displaying graphical user inter-
faces. In some implementations the input/output device can
be configured to accept verbal (e.g. spoken) inputs.

The features described can be implemented in digital elec-
tronic circuitry, or in computer hardware, firmware, or in
combinations of these. The features can be implemented in a
computer program product tangibly embodied in an informa-
tion carrier, e.g., in a machine-readable storage device, for
execution by a programmable processor; and features can be
performed by a programmable processor executing a pro-
gram of instructions to perform functions of the described
implementations by operating on input data and generating

10

15

20

25

30

35

40

45

50

55

60

65

12

output. The described features can be implemented in one or
more computer programs that are executable on a program-
mable system including at least one programmable processor
coupled to receive data and instructions from, and to transmit
data and instructions to, a data storage system, at least one
input device, and at least one output device. A computer
program includes a set of instructions that can be used,
directly or indirectly, in a computer to perform a certain
activity or bring about a certain result. A computer program
can be written in any form of programming language, includ-
ing compiled or interpreted languages, and it can be deployed
in any form, including as a stand-alone program or as a
module, component, subroutine, or other unit suitable for use
in a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors of any kind of computer. Gener-
ally, a processor will receive instructions and data from a
read-only memory or arandom access memory or both. Com-
puters include a processor for executing instructions and one
or more memories for storing instructions and data. Gener-
ally, acomputer will also include, or be operatively coupled to
communicate with, one or more mass storage devices for
storing data files; such devices include magnetic disks, such
as internal hard disks and removable disks; magneto-optical
disks; and optical disks. Storage devices suitable for tangibly
embodying computer program instructions and data include
all forms of non-volatile memory, including by way of
example semiconductor memory devices, such as EPROM,
EEPROM, and flash memory devices; magnetic disks such as
internal hard disks and removable disks; magneto-optical
disks; and CD-ROM and DVD-ROM disks. The processor
and the memory can be supplemented by, or incorporated in,
ASICs (application-specific integrated circuits).

To provide for interaction with a user, the features can be
implemented on a computer having a display device such as a
CRT (cathode ray tube), LCD (liquid crystal display) moni-
tor, elnk display or another type of display for displaying
information to the user and a keyboard and a pointing device
such as a mouse or a trackball by which the user can provide
input to the computer.

The features can be implemented in a computer system that
includes a back-end component, such as a data server, or that
includes a middleware component, such as an application
server or an Internet server, or that includes a front-end com-
ponent, such as a client computer having a graphical user
interface or an Internet browser, or any combination of them.
The components of the system can be connected by any form
or medium of digital data communication such as a commu-
nication network. Examples of communication networks
include, e.g., alLAN, a WAN, and the computers and networks
forming the Internet.

The computer system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a network, such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

The processor 910 carries out instructions related to a
computer program. The processor 910 may include hardware
such as logic gates, adders, multipliers and counters. The
processor 910 may further include a separate arithmetic logic
unit (AL U) that performs arithmetic and logical operations.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made. For example, elements of one or more imple-

US 9,064,299 B2

13

mentations may be combined, deleted, modified, or supple-
mented to form further implementations. As yet another
example, the logic flows depicted in the figures do not require
the particular order shown, or sequential order, to achieve
desirable results. In addition, other steps may be provided, or
steps may be eliminated, from the described flows, and other
components may be added to, or removed from, the described
systems.
Accordingly, other implementations are within the scope
of the following claims.
What is claimed is:
1. A method comprising:
for each of a set of pixel values representing a signal,
updating a first memory location based on the pixel
value and an exponential decay function that is based
on a Gaussian filter kernel;

updating a second memory location based on the current
updated value in the first memory location as well as
a decay factor of the exponential decay function and a
current value stored in the second memory location

computing a filtered pixel value as a combination of the
updated values in the first and second memory loca-
tions, the filtered pixel value approximating a filtering
of the signal by the Gaussian filter kernel.

2. The method of claim 1, wherein updating the first
memory location is based on a current value stored in the first
memory location.

3. The method of claim 1, wherein the combination further
includes the original pixel value scaled in accordance with a
weight.

4. The method of claim 1, comprising displaying the fil-
tered pixel values on a display device or storing the filtered
pixel values in a storage device.

5. The method of claim 1, wherein the original pixel values
obtained from the signal are distributed along two or more
dimensions.

6. The method of claim 5, wherein the original pixel values
obtained from the signal are distributed along three dimen-
sions.

7. The method of claim 1, further comprising updating a
third memory location based on an updated value in the
second memory location.

8. A system comprising:

a first memory location that is configured to be updated
based on (i) a pixel value of an input signal, and (ii) an
exponential decay function that is based on a Gaussian
filter kernel;

A second memory location that is configured to be updated
based on the current updated value in the first memory
location as well as a decay factor of the exponential
decay function and a current value stored in the second
memory location

circuitry configured to compute a filtered pixel value by
combining the updated values in the first and second
memory locations; and

10

15

20

25

30

35

40

45

50

14

an output storage location configured to receive the filtered
pixel value as an approximation of a filtering of the
signal by the Gaussian filter kernel.

9. The system of claim 8, comprising circuitry to update the
first memory location based on a current value stored in the
first memory location.

10. The system of claim 8, wherein the circuitry is config-
ured to combine the updated values in the first and second
memory locations with the original pixel value scaled in
accordance with a weight.

11. The system of claim 8, comprising a display device
configured to display the filtered pixel value.

12. The system of claim 8, wherein the original pixel values
obtained from the signal are distributed along two or more
dimensions.

13. The system of claim 12, wherein the original pixel
values obtained from the signal are distributed along three
dimensions.

14. The system of claim 8, further comprising a third
memory location that is configured to be updated based on an
updated value in the second memory location.

15. The system of claim 14 wherein the circuitry combines
the updated value in the third memory location with the
updated values in the first and second memory locations.

16. The system of claim 14 wherein the third memory
location is configured to be updated based on an output of an
adder that sums scaled values from the second and third
memory locations.

17. The system of claim 8, wherein the first or second
memory location comprises a register.

18. The system of claim 8 wherein the first memory loca-
tion is configured to be updated based on an output of an adder
that sums a scaled version of the pixel value of the input signal
with a scaled value from the first memory location.

19. The system of claim 8 wherein the second memory
location is configured to be updated based on an output of an
adder that sums scaled values from the first and second
memory locations.

20. A computer program product comprising a non-transi-
tory, computer readable storage device encoded with instruc-
tions, which upon execution cause one or more processors to:
for each of a set of pixel values representing a signal,

update a first memory location based on the pixel value and

an exponential decay function that is based on a Gauss-
ian filter kernel;
update a second memory location based on the current
updated value in the first memory location as well as a
decay factor of the exponential decay function and a
current value stored in the second memory location

compute a filtered pixel value as a combination of the
updated values in the first and second memory locations,
the filtered pixel value approximating a filtering of the
signal by the Gaussian filter kernel.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,064,299 B2 Page 1 of 1
APPLICATION NO. : 13/948789

DATED : June 23, 2015

INVENTOR(S) : Sims

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims
Col. 13, line 48, claim & delete “A” and insert -- a --

Signed and Sealed this
First Day of December, 2015

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

